Characterization of Generalized Haar Spaces

M. Bartelt
Department of Mathematics, Christopher Newport University,
Newport News, Virginia 23606, U.S.A.
E-mail: mbartelt@pcs.cnu.edu
and
W. Li*
Department of Mathematics and Statistics, Old Dominion University, Norfolk, Virginia 23529, U.S.A.

Communicated by G. Nurnberger
Received February 20, 1996; accepted in revised form December 3, 1996

We say that a subset G of $C_{0}\left(T, \mathbb{R}^{k}\right)$ is rotation-invariant if $\{Q g: g \in G\}=G$ for any $k \times k$ orthogonal matrix Q. Let G be a rotation-invariant finite-dimensional subspace of $C_{0}\left(T, \mathbb{R}^{k}\right)$ on a connected, locally compact, metric space T. We prove that G is a generalized Haar subspace if and only if $P_{G}(f)$ is strongly unique of order 2 whenever $P_{G}(f)$ is a singleton. © 1998 Academic Press

1. INTRODUCTION

Let T be a locally compact Hausdorff space and G a finite-dimensional subspace of $C_{0}\left(T, \mathbb{R}^{k}\right)$, the space of vector-valued functions f on T which vanish at infinity, i.e., the set $\left\{t \in T:\|f(t)\|_{2} \geqslant \varepsilon\right\}$ is compact for every $\varepsilon>0$. Here $\|y\|_{2}:=\left(\sum_{i=1}^{k}\left|y_{i}\right|^{2}\right)^{1 / 2}$ denotes the 2-norm on the k-dimensional Euclidean space \mathbb{R}^{k} (of column vectors). For f in $C_{0}\left(T, \mathbb{R}^{k}\right)$, the norm of f is defined as

$$
\|f\|:=\sup _{t \in T}\|f(t)\|_{2} .
$$

The metric projection P_{G} from $C_{0}\left(T, \mathbb{R}^{k}\right)$ to G is given by

$$
P_{G}(f)=\{g \in G:\|f-g\|=\operatorname{dist}(f, G)\}, \quad \text { for } \quad f \in C_{0}\left(T, \mathbb{R}^{k}\right),
$$

[^0]where
$$
\operatorname{dist}(f, G)=\inf \{\|f-g\|: g \in G\} .
$$

A subspace G of $C_{0}\left(T, \mathbb{R}^{k}\right)$ is said to be a Chebyshev subspace if $P_{G}(f)$ is a singleton for every $f \in C_{0}\left(T, \mathbb{R}^{k}\right)$. In the Banach space of real-valued continuous functions $C_{0}(T) \equiv C_{0}\left(T, \mathbb{R}^{1}\right)$, it is well-known that G is an n-dimensional Chebyshev subspace of $C_{0}(T)$ if and only if G satisfies the Haar condition (i.e., every nonzero g in G has at most ($n-1$) zeros). The Haar condition not only provides an intrinsic characterization of Chebyshev subspaces of $C_{0}(T)$, but also ensures strong unicity and Lipschitz continuity of the metric projection P_{G}, as shown in the following theorem.

Theorem 1. Suppose that G is an n-dimensional subspace of $C_{0}(T)$. Then the following are equivalent:
(i) G satisfies the Haar condition;
(ii) G is a Chebyshev subspace of $C_{0}(T)$;
(iii) for every f in $C_{0}(T), P_{G}(f)$ is strongly unique, i.e., there exists a constant $\gamma(f)>0$ such that

$$
\|f-g\| \geqslant \operatorname{dist}(f, G)+\gamma(f) \cdot\left\|g-P_{G}(f)\right\|, \quad \text { for } \quad g \in G
$$

(iv) for every f in $C_{0}(T), P_{G}(f)$ is a singleton and P_{G} is Lipschitz continuous at f, i.e., there exists a constant $\lambda(f)>0$ such that

$$
\left\|P_{G}(f)-P_{G}(h)\right\| \leqslant \lambda(f) \cdot\|f-h\|, \quad \text { for } \quad h \in C_{0}(T) .
$$

Furthermore, if $T=[a, b]$ is a closed subinterval of \mathbb{R}, then all the above are equivalent to the following statement:
(v) $P_{G}(f)$ is strongly unique whenever $P_{G}(f)$ is a singleton.

The equivalence of (i) and (ii) is due to Haar [6]. Newman and Shapiro [11] proved that (i) implies (iii). Lipschitz continuity of P_{G} was proved by Freud in [5] and the equivalence condition (v) was given by McLaughlin and Sommers [10]. See [8] for more details. The above theorem summarizes the implications of the Haar condition in $C_{0}(T)$. One natural question is what are the implications of the Haar condition for a finitedimensional subspace of the Banach space, $C_{0}(T, \mathbb{C})$, of all complex-valued continuous functions on T that vanish at infinity. Newman and Shapiro [11] proved that if $G:=\left\{\sum_{i=1}^{n} c_{i} g_{i}(x): c_{i} \in \mathbb{C}\right\}$ is an n-dimensional subspace of $C_{0}(T, \mathbb{C})$ and satisfies the Haar condition, then G is a Chebyshev subspace
of $C_{0}(T, \mathbb{C})$ and, for every $f(x) \in C_{0}(T, \mathbb{C})$, there exists a constant $\gamma(f)>0$ such that

$$
\begin{equation*}
\|f-g\|^{2} \geqslant \operatorname{dist}(f, G)^{2}+\gamma(f) \cdot\left\|g-P_{G}(f)\right\|^{2}, \quad \text { for } \quad g \in G \tag{1}
\end{equation*}
$$

The inequality (1) is also referred to as strong unicity of order 2 and is equivalent to the following original form given by Newman and Shapiro:

$$
\begin{aligned}
& \|f-g\| \geqslant \operatorname{dist}(f, G)+\beta(f) \cdot\left\|g-P_{G}(f)\right\|^{2}, \\
& \quad \text { for } \quad g \in G \quad \text { with } \quad\left\|g-P_{G}(f)\right\| \leqslant 1,
\end{aligned}
$$

where $\beta(f)$ is some positive constant. Moreover, the Haar condition is also necessary for a finite-dimensional Chebyshev subspace of $C_{0}(T, \mathbb{C})$. In fact, an analog of (i)-(iv) of Theorem 1 holds for finite-dimensional Chebyshev subspaces of $C_{0}\left(T, \mathbb{R}^{k}\right)$, due to the following intrinsic characterization, which we call the generalized Haar condition, of finite-dimensional Chebyshev subspaces of $C_{0}\left(T, \mathbb{R}^{k}\right)$ given by Zukhovitskii and Stechkin [13].

Definition 2. Let G be an n-dimensional subspace of $C_{0}\left(T, \mathbb{R}^{k}\right)$ and let m be the maximum integer less than n / k (i.e., $m k<n \leqslant(m+1) k$). Then G is called a generalized Haar space if
(i) every nonzero g in G has at most m zeros;
(ii) for any m distinct points t_{i} in T and any m vectors $\left\{x_{1}, \ldots, x_{m}\right\}$ in \mathbb{R}^{k}, there is a vector-valued function p in G such that $p\left(t_{i}\right)=x_{i}$ for $1 \leqslant i \leqslant m$.

The following analog in $C_{0}\left(T, \mathbb{R}^{k}\right)$ for parts (i)-(iv) of Theorem 1 was given in [1]. The equivalence (i) \Leftrightarrow (ii) in the following theorem belongs to Zukhovitskii and Stechkin [13].

Theorem 3. Let G be a finite-dimensional subspace of $C_{0}\left(T, \mathbb{R}^{k}\right)$. Then the following are equivalent:
(i) G is a generalized Haar subspace.
(ii) G is a Chebyshev subspace of $C_{0}\left(T, \mathbb{R}^{k}\right)$.
(iii) P_{G} is strongly unique of order 2 at each f in $C_{0}\left(T, \mathbb{R}^{k}\right)$.
(iv) for every f in $C_{0}\left(T, \mathbb{R}^{k}\right), P_{G}(f)$ is a singleton and P_{G} satisfies a Hölder continuity condition of order $\frac{1}{2}$.

Here the Hölder condition is the analog in $C_{0}\left(T, \mathbb{R}^{k}\right)$ for Lipschitz continuity in Theorem 1. The metric projection P_{G} is said to satisfy a Hölder continuity condition of order $\frac{1}{2}$ at f if $P_{G}(\phi)$ is a singleton for every
ϕ in $C_{0}\left(T, \mathbb{R}^{k}\right)$ and there exists a positive number $\lambda=\lambda(f)$ such that $\left\|P_{G}(f)-P_{G}(h)\right\| \leqslant \lambda\|f-h\|^{1 / 2}(1+\|f+h\|)^{1 / 2}$ for all h in $C_{0}\left(T, \mathbb{R}^{k}\right)$.

The main goal of this paper is to present an analog of part (v) of Theorem 1 for finite-dimensional subspaces in $C_{0}\left(T, \mathbb{R}^{k}\right)$. However, we can only do so under the assumption that G is rotation invariant.

Definition 4. A subspace G of $C_{0}\left(T, \mathbb{R}^{k}\right)$ is said to be rotationinvariant if $\{Q g: g \in G\}=G$ for any $k \times k$ orthogonal matrix Q.

Note that $C_{0}(T, \mathbb{C}) \equiv C_{0}\left(T, \mathbb{R}^{2}\right)$, since

$$
f_{1}(x)+\mathbf{i} f_{2}(x) \equiv\binom{f_{1}(x)}{f_{2}(x)} .
$$

Here $\mathbf{i}=\sqrt{-1}$. An n-dimensional subspace of $C_{0}(T, \mathbb{C})$ can be identified with a $(2 n)$-dimensional subspace of $C_{0}\left(T, \mathbb{R}^{2}\right)$. In fact, one can prove that any rotation invariant finite-dimensional subspace in $C_{0}\left(T, \mathbb{R}^{2}\right)$ can be identified with a finite-dimensional subspace in $C_{0}(T, \mathbb{C})$ (cf. Lemma 9). In fact, we consider rotation-invariant subspaces of $C_{0}\left(T, \mathbb{R}^{k}\right)$ as the natural generalization of complex-valued function subspaces. Now we state the main theorem and present its proof in the next section.

Theorem 5. Let G be a rotation-invariant finite-dimensional subspace of $C_{0}\left(T, \mathbb{R}^{k}\right)$, where T is a connected and locally compact metric space. If $P_{G}(f)$ is strongly unique with order 2 whenever $P_{G}(f)$ is a singleton, then G is a generalized Haar subspace.

Remark. Theorem 5 holds for any space T which is connected, locally compact, first countable, and Hausdorff because these are the only properties of T used in the proof.

In Lemma 9, we will show that G is rotation-invariant if and only if G is the tensor product of k-copies of a subspace G_{1} of $C_{0}(T)$, i.e., $G=G_{1} \times \cdots \times G_{1}$. Thus, G is a rotation-invariant Chebyshev subspace of $C_{0}\left(T, \mathbb{R}^{k}\right)$ if and only if G is the tensor product of k-copies of a Haar subspace G_{1} of $C_{0}(T)$.

Note that for $k=1$ the result of McLaughlin and Sommers [10] follows from Theorem 5 and, in fact, Theorem 5 gives the following stronger result than that of McLaughlin and Sommers, since the strong unicity of $P_{G}(f)$ implies the strong unicity of order 2 .

Corollary 6. Suppose that G is an n-dimensional subspace of $C_{0}(T)$ and T is a connected and locally compact metric space. Then G is a Haar subspace if $P_{G}(f)$ is strongly unique of order 2 whenever $P_{G}(f)$ is a singleton.

2. PROOF OF THE MAIN THEOREM

The proof of Theorem 5 will follow after five lemmas are given. We use $\langle x, y\rangle:=\sum_{i=1}^{n} x_{i} y_{i}$ to denote the dot product of vectors x and y in $\mathbb{R}^{k}, \operatorname{supp}(\sigma):=\{t \in T: \sigma(t) \neq 0\}$ for any mapping $\sigma: T \rightarrow \mathbb{R}^{k}, Z(g):=$ $\{t \in T: g(t)=0\}$ for any function g in $C_{0}\left(T, \mathbb{R}^{k}\right)$, and $Z(K):=\bigcap_{g \in K} Z(g)$ for any subset K of $C_{0}\left(T, \mathbb{R}^{k}\right)$. For any subset K of $T,\left.G\right|_{K}$ denotes the restriction of G on K as a subspace of $C\left(K, \mathbb{R}^{k}\right)$. The boundary and closure of K are denoted by $\operatorname{bd}(K)$ and $\operatorname{cl}(K)$, respectively. For a finite subset T_{0} of T, let $\operatorname{card}\left(T_{0}\right)$ be the cardinality of T_{0} (i.e., $\operatorname{card}\left(T_{0}\right)$ is the number of points in T_{0}). A mapping σ from T to \mathbb{R}^{k} is called an annihilator of G if

$$
\sum_{t \in \operatorname{supp}(\sigma)}\langle\sigma(t), g(t)\rangle=0 \quad \text { for } \quad g \in G .
$$

Lemma 7. Suppose that $G \neq\{0\}$ is a finite-dimensional subspace of $C_{0}\left(T, \mathbb{R}^{k}\right)$. Then there exists a mapping σ from T to \mathbb{R}^{k} that has the following properties:
(a) $\operatorname{supp}(\sigma)$ is a finite subset of T;
(b) $\langle\sigma(t), g(t)\rangle \equiv 0$ whenever $\langle\sigma(t), g(t)\rangle \geqslant 0$ for $t \in \operatorname{supp}(\sigma)$;
(c) $G_{\sigma}:=\{g \in G: \operatorname{supp}(\sigma) \subset Z(g)\}$ satisfies the generalized Haar condition on $T \backslash Z\left(G_{\sigma}\right)$.
(d) $\operatorname{dim} G_{\sigma} \geqslant 1$.

Proof. We prove the lemma by induction. If $\operatorname{dim}(G)=1$, then G does satisfy the generalized Haar condition on $T \backslash Z(G)$ and $\sigma(t) \equiv 0$ satisfies the conditions (a)-(d). Suppose that the lemma holds for subspaces of $C_{0}\left(T, \mathbb{R}^{k}\right)$ with dimension $<n$ and $\operatorname{dim} G=n$. Let $(m+1)$ be the smallest integer that is greater or equal to n / k. If G satisfies the generalized Haar condition on $T \backslash Z(G)$, let $\sigma(t) \equiv 0$. Then $G_{\sigma}=G$ and we are done. If G does not satisfy the generalized Haar condition on $T \backslash Z(G)$, then either there exist m points t_{1}, \ldots, t_{m} in $T \backslash Z(G)$ such that $\left.\operatorname{dim} G\right|_{\left\{t_{1}, \ldots, t_{m}\right\}}<k m$ or there exists a nonzero function $g \in G$ such that $Z(g)$ contains $(m+1)$ points $t_{1}, \ldots, t_{m}, t_{m+1}$. In either case, there exists a finite subset T_{0} of $T \backslash Z(G)$ and a nonzero function $g_{0}(t)$ such that $\left.\operatorname{dim} G\right|_{T_{0}}<k \operatorname{card}\left(T_{0}\right)$ and $T_{0} \subset Z\left(g_{0}\right)$. Since in the Banach space $\left.C\left(T_{0}, \mathbb{R}^{k}\right) \operatorname{dim} G\right|_{T_{0}}<k \operatorname{card}\left(T_{0}\right)$, there exists an annihilator τ of $\left.G\right|_{T_{0}}$ with $\operatorname{supp}(\tau) \subset T_{0}$, so τ annihilates G also. Since $\operatorname{supp}(\tau) \subset T \backslash Z(G), \operatorname{dim} G_{\tau}<\operatorname{dim} G$. Since $g_{0} \in G_{\tau}, \operatorname{dim} G_{\tau} \geqslant 1$. Consider G_{τ} as a subspace defined on $T \backslash Z\left(G_{\tau}\right)$. By the induction assumption, there exists a mapping μ from $T \backslash Z\left(G_{\tau}\right)$ to \mathbb{R}^{k} such that the conditions (a)-(d) hold for $\sigma \equiv \mu$ and $\left.G \equiv G_{\tau}\right|_{T \backslash Z\left(G_{\tau}\right)}$.

Let $\sigma(t):=\tau(t)$ for $t \in \operatorname{supp}(\tau)$ and $\sigma(t)=\mu(t)$ for $t \notin \operatorname{supp}(\tau)$. Then it is easy to verify that the conditions (a)-(d) hold for σ.

Lemma 8. Let K be a subset of $G, t_{0} \in \operatorname{bd} Z(K), t_{0}^{i} \in T \backslash Z(K)$ such that $t_{0}^{i} \rightarrow t_{0}$ as $i \rightarrow \infty$, and τ is a continuous mapping defined on $\left\{t_{0}, t_{0}^{i}: i=1,2, \ldots\right\}$. Then there exists a function $\bar{g} \in K$ and an index \bar{i} such that $\left\langle\tau\left(t_{0}^{i}\right), g\left(t_{0}^{i}\right)\right\rangle=0$ for $i \geqslant \bar{i}$ whenever

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \sup \frac{\left|\left\langle\tau\left(t_{0}^{i}\right), g\left(t_{0}^{i}\right)\right\rangle\right|}{\left|\left\langle\tau\left(t_{0}^{i}\right), \bar{g}\left(t_{0}^{i}\right)\right\rangle\right|^{3 / 2}} \leqslant 1, \tag{2}
\end{equation*}
$$

where we define $0 / 0:=0$.
Proof. Let $\langle\tau, K\rangle:=\{\langle\tau(t), g(t)\rangle: g \in K\}$. Since dim span $\left.\langle\tau, K\rangle\right|_{\left\{t_{0}^{j} t_{0}^{j+1}, \ldots\right\}}$ is a nonincreasing function of j and has finitely many values, there exists \bar{i} such that dim $\left.\operatorname{span}\langle\tau, K\rangle\right|_{\left\{t_{0}^{i}, t_{0}^{i+1}, \ldots\right\}}=\left.\operatorname{dim} \operatorname{span}\langle\tau, K\rangle\right|_{\left\{t_{0}^{j}, t_{0}^{j+1}, \ldots\right\}}$ for $j \geqslant \bar{i}$. That is, if $j \geqslant i$ and $\left\langle\tau\left(t_{0}^{i}\right), g\left(t_{0}^{i}\right)\right\rangle=0$ for $i \geqslant j$, then $\langle\tau(t), g(t)\rangle=0$ on $T_{0}:=\left\{t_{i}, t_{i+1, \ldots}\right\}$.

Let g_{1} be a nonzero function in K. (If $K=\{0\}$, then the lemma is trivially true.) If g_{1} can not be used as \bar{g}, then there exists a function g_{2} in K such that

$$
\lim _{i \rightarrow \infty} \sup \frac{\left|\left\langle\tau\left(t_{0}^{i}\right), g_{2}\left(t_{0}^{i}\right)\right\rangle\right|}{\left|\left\langle\tau\left(t_{0}^{i}\right), g_{1}\left(t_{0}^{i}\right)\right\rangle\right|^{3 / 2}} \leqslant 1,
$$

but $\left\langle\tau\left(t_{0}^{i}\right), g_{2}\left(t_{0}^{i}\right)\right\rangle \neq 0$ for infinitely many i 's. By the choice of g_{2}, for all i sufficiently large, we have

$$
\begin{equation*}
\left|\left\langle\tau\left(t_{0}^{i}\right), g_{2}\left(t_{0}^{i}\right)\right\rangle\right| \leqslant 2\left|\left\langle\tau\left(t_{0}^{i}\right), g_{1}\left(t_{0}^{i}\right)\right\rangle\right|^{3 / 2} . \tag{3}
\end{equation*}
$$

We claim that g_{1} and g_{2} are linearly independent. Let $c_{1} g_{1}+c_{2} g_{2}=0$. Then for all i sufficiently large

$$
\begin{align*}
0 & =\left|c_{1}\left\langle\tau\left(t_{0}^{i}\right), g_{1}\left(t_{0}^{i}\right)\right\rangle+c_{2}\left\langle\tau\left(t_{0}^{i}\right), g_{2}\left(t_{0}^{i}\right)\right\rangle\right| \\
& \geqslant\left|c_{1}\left\langle\tau\left(t_{0}^{i}\right), g_{1}\left(t_{0}^{i}\right)\right\rangle\right|-\left|c_{2}\left\langle\tau\left(t_{0}^{i}\right), g_{2}\left(t_{0}^{i}\right)\right\rangle\right| \\
& \geqslant\left|c_{1}\left\langle\tau\left(t_{0}^{i}\right), g_{1}\left(t_{0}^{i}\right)\right\rangle\right|-2\left|c_{2}\left\langle\tau\left(t_{0}^{i}\right), g_{1}\left(t_{0}^{i}\right)\right\rangle\right|^{3 / 2} \\
& =\left|\left\langle\tau\left(t_{0}^{i}\right), g_{1}\left(t_{0}^{i}\right)\right\rangle\right|\left(\left|c_{1}\right|-2\left|c_{2}\right|\left\langle\tau\left(t_{0}^{i}\right), g_{1}\left(t_{0}^{i}\right)\right\rangle^{1 / 2}\right) . \tag{4}
\end{align*}
$$

Since $\left|c_{2}\left\langle\tau\left(t_{0}^{i}\right), g_{1}\left(t_{0}^{i}\right)\right\rangle\right|^{1 / 2} \rightarrow 0$ as $i \rightarrow \infty$, it follows from (3) and (4) using those i for which $\left\langle\tau\left(t_{0}^{i}\right), g_{2}\left(t_{0}^{i}\right)\right\rangle \neq 0$ that $c_{1}=0$. Since g_{2} is a nonzero function, $c_{2} g_{2}=0$ implies $c_{2}=0$. Hence, g_{1} and g_{2} are linearly independent.

If g_{2} can not be used as \bar{g}, then there exists a function g_{3} in K such that $\left\langle\tau\left(t_{0}^{i}\right), g_{3}\left(t_{0}^{i}\right)\right\rangle \neq 0$ for infinitely many i (possibly different from where $\left.\left\langle\tau\left(t_{0}^{i}\right), g_{2}\left(t_{0}^{i}\right)\right\rangle \neq 0\right)$ and

$$
\begin{equation*}
\lim \sup _{i \rightarrow \infty} \frac{\left|\left\langle\tau\left(t_{0}^{i}\right), g_{3}\left(t_{0}^{i}\right)\right\rangle\right|}{\left|\left\langle\tau\left(t_{0}^{i}\right), g_{2}\left(t_{0}^{i}\right)\right\rangle\right|^{3 / 2}} \leqslant 1 . \tag{5}
\end{equation*}
$$

By (2) and (5), for all i sufficiently large, we have

$$
\begin{equation*}
\left|\left\langle\tau\left(t_{0}^{i}\right), g_{3}\left(t_{0}^{i}\right)\right\rangle\right| \leqslant 2\left|\left\langle\tau\left(t_{0}^{i}\right), g_{2}\left(t_{0}^{i}\right)\right\rangle\right|^{3 / 2} \leqslant 4\left|\left\langle\tau\left(t_{0}^{i}\right), g_{1}\left(t_{0}^{i}\right)\right\rangle\right|^{9 / 4} . \tag{6}
\end{equation*}
$$

Now suppose that $c_{1} g_{1}+c_{2} g_{2}+c_{3} g_{3}=0$. By (4) and (6), we get that, for all i sufficiently large,

$$
\begin{aligned}
0= & \left|c_{1}\left\langle\tau\left(t_{0}^{i}\right), g_{1}\left(t_{0}^{i}\right)\right\rangle+c_{2}\left\langle\tau\left(t_{0}^{i}\right), g_{2}\left(t_{0}^{i}\right)\right\rangle+c_{3}\left\langle\tau\left(t_{0}^{i}\right), g_{3}\left(t_{0}^{i}\right)\right\rangle\right| \\
\geqslant \geqslant & \left|\left\langle\tau\left(t_{0}^{i}\right), g_{1}\left(t_{0}^{i}\right)\right\rangle\right|\left(\left|c_{1}\right|-2\left|c_{2}\right|\left|\left\langle\tau\left(t_{0}^{i}\right), g_{1}\left(t_{0}^{i}\right)\right\rangle\right|^{1 / 2}\right. \\
& \left.-4\left|c_{3}\right|\left|\left\langle\tau\left(t_{0}^{i}\right), g_{1}\left(t_{0}^{i}\right)\right\rangle\right|^{5 / 4}\right) .
\end{aligned}
$$

Using those i for which $\left\langle\tau\left(t_{0}^{i}\right), g_{1}\left(t_{0}^{i}\right)\right\rangle \neq 0$ as above we obtain $c_{1}=0$. Then from $c_{2} g_{2}+c_{3} g_{3}=0$ we obtain as above

$$
\begin{aligned}
0= & \left|c_{2}\left\langle\tau\left(t_{0}^{i}\right), g_{2}\left(t_{0}^{i}\right)\right\rangle+c_{3}\left\langle\tau\left(t_{0}^{i}\right), g_{3}\left(t_{0}^{i}\right)\right\rangle\right| \\
& \geqslant\left|\left\langle\tau\left(t_{0}^{i}\right), g_{2}\left(t_{0}^{i}\right)\right\rangle\right|\left(\left|c_{2}\right|-2\left|c_{3}\right| \cdot\left|\left\langle\tau\left(t_{0}^{i}\right), g_{2}\left(t_{0}^{i}\right)\right\rangle\right|^{1 / 2}\right)
\end{aligned}
$$

and using those i for which $\left\langle\tau\left(t_{0}^{i}\right), g_{2}\left(t_{0}^{i}\right)\right\rangle \neq 0$ we obtain $c_{2}=0$. Since $g_{3} \neq 0$ and $c_{3} g_{3}=0$, we have $c_{3}=0$. Therefore, g_{1}, g_{2}, g_{3} are linearly independent.

If no function in K can be used as \bar{g} then continuing in this manner we can construct infinitely many linearly independent functions g_{1}, g_{2}, \ldots in K. Since G is finite-dimensional, this is impossible.

Lemma 9. Suppose that G is a rotation-invariant finite dimensional subspace of $C_{0}\left(T, \mathbb{R}^{k}\right)$. Then $m:=n / k$ is an integer and G is the tensor product of k-copies of an m-dimensional subspace G_{1} of $C_{0}(T)$, i.e.,

$$
G=\left\{\sum_{i=1}^{k} g_{i} e_{i}: g_{i} \in G_{1} \text { for } 1 \leqslant i \leqslant k\right\},
$$

where e_{i} is the ith canonical basis vector for \mathbb{R}^{k} (i.e., all components of e_{i} are zero except that the ith component is 1).

Proof. If g is in G, then $g=\sum_{i=1}^{k} g_{i} e_{i}$ where $g_{i} \in C_{0}\left(T, \mathbb{R}^{1}\right)$. Let $G_{i}:=\left\{g_{i}: g=\sum_{j=1}^{k} g_{j} e_{j} \in G\right\}$ for $i=1, \ldots, k$. Then it is obvious that
$G \subset G_{1} \times \cdots \times G_{k}\left(\equiv\left\{\sum_{i=1}^{k} g_{i} e_{i}: g_{i} \in G_{i}\right\}\right)$. For a fixed i, let Q_{i} be the $k \times k$ orthogonal matrix whose j th column is e_{j} for $j \neq i$ and $-e_{i}$ for $j=i$. For any $g_{i} \in G_{i}$, there exists $g_{j} \in G_{j}$ for $j \neq i$ such that $g:=\sum_{j=1}^{k} g_{j} e_{j} \in G$. Then $Q_{i} g \in G$ and $g_{i} e_{i}=\frac{1}{2}\left(g-Q_{i} g\right) \in G$. Thus, $G_{1} \times \ldots \times G_{k} \subset G$, which implies $G=G_{1} \times \cdots \times G_{k}$.

Now we show that $G_{i} \equiv G_{1}$ for $1 \leqslant i \leqslant k$. Let B_{i} be the orthogonal matrix that as e_{i} has its first column, e_{1} as its i th column, e_{j} as its j th column for $j \neq 1$ or i. For any $g_{1} \in G_{1}$ and $g_{i} \in G_{i}$, we have $g_{i} e_{1}=B_{i}\left(g_{i} e_{i}\right) \in G$ and $g_{1} e_{i}=B_{i}\left(g_{1} e_{1}\right) \in G$. Hence, $g_{i} \in G_{1}$ and $g_{1} \in G_{i}$. So $G_{1}=G_{2}=\cdots=G_{k}$ and $G=\left\{\sum_{i=1}^{k} g_{i} e_{i}: g_{i} \in G_{1}\right.$ for $\left.1 \leqslant i \leqslant k\right\}$.

Lemma 10. Suppose that G is a generalized Haar subspace of $C_{0}\left(T, \mathbb{R}^{k}\right)$ and $\operatorname{dim} G=m k$. Then, for any given m distinct points t_{1}, \ldots, t_{m} in T and m vectors x_{1}, \ldots, x_{m} in \mathbb{R}^{k}, there exists a function g in G such that $g\left(t_{i}\right)=x_{i}$ for $i=1, \ldots, m$.

Proof. We show that $\left.\operatorname{dim} G\right|_{\left\{t_{1}, \ldots, t_{m}\right\}}=\operatorname{dim} G$. If not then there exists a $\bar{g} \neq 0$ in G such that $\bar{g}\left(t_{i}\right)=0, i=1, \ldots, m$. But this contradicts the fact that G is a generalized Haar set and therefore any function in G has at most $(m-1)$ zeroes. Since $\operatorname{dim} G=m k$ and $\operatorname{dim} C\left(\left\{t_{1}, \ldots, t_{m}\right\}, \mathbb{R}^{k}\right)=m k$ the result follows.

Proof of Theorem 5. By Lemma 7, there exists a mapping σ from T into \mathbb{R}^{k} such that the conditions (a)-(d) in Lemma 7 hold. It follows that if G is not a generalized Haar subspace, then $Z\left(G_{\sigma}\right) \neq \varnothing$. Since $Z\left(G_{\sigma}\right)$ is closed and T is connected, bd $Z\left(G_{\sigma}\right)$ contains at least one point, say t_{0}. Let $\left\{t_{0}^{i}\right\}_{i=1}^{\infty}$ be a sequence of distinct points in $T \backslash Z\left(G_{\sigma}\right)$ such that $\lim _{i \rightarrow \infty} t_{0}^{i}=t_{0}$.

Since G is rotation-invariant, it is easy to verify that G_{σ} is rotationinvariant and hence $\operatorname{dim} G_{\sigma}=k m$ for some integer m. Choose m distinct points $\left\{t_{1}, \ldots, t_{m}\right\}$ in $T \backslash\left(\left\{t_{0}, t_{0}^{i}, i=1, \ldots\right\} \cup Z\left(G_{\sigma}\right)\right)$. Notice then that $\left\{t_{1}, \ldots, t_{m}\right\} \cap \operatorname{supp}(\sigma)=\varnothing$. Then by Lemma 10 , for any vectors x_{1}, \ldots, x_{m} in \mathbb{R}^{k}, there exists a function g in G_{σ} such that $g\left(t_{j}\right)=x_{j}$, for $j=1, \ldots, m$. Since, for fixed $i,\left.\operatorname{dim} G_{\sigma}\right|_{\left\{t_{1}^{i}, t_{1}, \ldots, t_{m}\right\}}<k(m+1)$, there exists an annihilator τ_{i} of G_{σ} such that $\operatorname{supp}\left(\tau_{i}\right) \subset\left\{t_{0}^{i}, t_{1}, \ldots, t_{m}\right\}$. By the interpolation property of G_{σ} on any m points of $T \backslash Z\left(G_{\sigma}\right), \operatorname{supp}\left(\tau_{i}\right)$ must have $(m+1)$ points. Thus,

$$
\operatorname{supp}\left(\tau_{i}\right)=\left\{t_{0}^{i}, t_{1}, \ldots, t_{m}\right\}
$$

Without loss of generality, we may assume that there exist unit vectors in $\mathbb{R}^{k}, \tau\left(t_{0}\right), \tau\left(t_{1}\right), \ldots, \tau\left(t_{m}\right)$, such that

$$
\lim _{i \rightarrow \infty} \operatorname{sgn}\left(\tau_{i}\left(t_{0}^{i}\right)\right)=\tau\left(t_{0}\right)
$$

and

$$
\lim _{i \rightarrow \infty} \operatorname{sgn}\left(\tau_{i}\left(t_{j}\right)\right)=\tau\left(t_{j}\right), \quad \text { for } \quad j=1, \ldots, m
$$

If t_{0} is in $\operatorname{supp}(\sigma)$, we may assume that $\operatorname{sgn}\left(\sigma\left(t_{0}\right)\right)=\tau\left(t_{0}\right)$. Otherwise, we can replace τ_{i} by $Q \tau_{i}$, where Q is an orthogonal matrix such that $Q \tau\left(t_{0}\right)=\operatorname{sgn}\left(\sigma\left(t_{0}\right)\right)$. (Here the rotation-invariance of G is used.)

Let $\tau\left(t_{0}^{i}\right)=\operatorname{sgn}\left(\tau_{i}\left(t_{0}^{i}\right)\right.$. Then τ is a continuous function on the closed set

$$
\begin{equation*}
A:=\left\{t_{0}, t_{0}^{i}: i=1,2, \ldots\right\} . \tag{7}
\end{equation*}
$$

Let $K=\left\{g\right.$ in $G_{\sigma}: g \not \equiv 0$ and, for $1 \leqslant j \leqslant m$ either $g\left(t_{j}\right)=0$ or $\left\langle g\left(t_{j}\right)\right.$, $\left.\left.\tau\left(t_{j}\right)\right\rangle>0\right\}$. Since G_{σ} is a generalized Haar set on $T \backslash Z\left(G_{\sigma}\right)$, it follows that $K \neq \varnothing$ and if g is in K then for at least one $j, g\left(t_{j}\right) \neq 0$. Let \bar{g} in K be the function given by Lemma 8.

Now follows a lengthy construction of a function f in $C_{0}\left(T, \mathbb{R}^{k}\right)$. First let $\bar{t} \in\left(\operatorname{supp}(\sigma) \cup\left\{t_{1}, \ldots, t_{m}\right\}\right) \backslash\left\{t_{0}\right\}$. Then, for t in a sufficiently small neighborhood of each such \bar{t}, define

$$
\bar{f}(t)= \begin{cases}\operatorname{sgn}(\sigma(\bar{t}))\left(1-\|g(\bar{t})\|_{2}\right) & \text { if } \quad \bar{t} \in \operatorname{supp}(\sigma) \backslash\left\{t_{0}\right\} \\ \tau(\bar{t})\left(1-\|\bar{g}(t)\|_{2}\right) & \text { if } \bar{t}=t_{j} \in\left\{t_{1}, \ldots, t_{m}\right\}, \bar{g}\left(t_{j}\right)=0 \\ \tau(\bar{t}) & \text { if } \bar{t}=t_{j} \in\left\{t_{1}, \ldots, t_{m}\right\}, \bar{g}\left(t_{j}\right) \neq 0 .\end{cases}
$$

Then, for $\varepsilon>0$ small enough and t near \bar{t} in $\operatorname{supp}(\sigma)$,

$$
\begin{aligned}
\|\bar{f}(t)-\varepsilon \bar{g}(t)\|_{2} & =\left\|\left(1-\|\bar{g}(t)\|_{2}\right) \operatorname{sgn} \sigma(\bar{t})-\varepsilon \bar{g}(t)\right\|_{2} \\
& \leqslant 1-\|\bar{g}(t)\|_{2}+\varepsilon\|\bar{g}(t)\|_{2} \leqslant 1,
\end{aligned}
$$

and, similarly, $\|\bar{f}(t)-\varepsilon \bar{g}(t)\| \leqslant 1$ for t near t_{j} in $\left\{t_{1}, \ldots, t_{m}\right\}$ if $\bar{g}\left(t_{j}\right)=0$. If $\bar{g}\left(t_{j}\right) \neq 0$, then $\left\langle\bar{g}\left(t_{j}\right), \tau\left(t_{j}\right)\right\rangle=\left\langle\bar{g}\left(t_{j}\right), \bar{f}\left(t_{j}\right)\right\rangle>0$ and, by the continuity of \bar{g}, $\left\langle\bar{g}(t), \tau\left(t_{j}\right)\right\rangle>\delta>0$ for t near t_{j}. Thus, for t near t_{j},

$$
\begin{aligned}
\|\bar{f}(t)-\varepsilon \bar{g}(t)\|_{2}^{2} & =\left\|\tau\left(t_{j}\right)\right\|^{2}-2 \varepsilon\left\langle\bar{g}\left(t_{j}\right), \tau\left(t_{j}\right)\right\rangle+\varepsilon^{2}\|\bar{g}(t)\|_{2}^{2} \\
& \leqslant 1-2 \delta \varepsilon+\varepsilon^{2}\|\bar{g}\|<1,
\end{aligned}
$$

if $\varepsilon>0$ is small enough. Therefore, for a sufficiently small neighborhood W_{1} of $\left[\left(\operatorname{supp}(\sigma) \cup\left\{t_{1}, \ldots, t_{m}\right\}\right) \backslash\left\{t_{0}\right\}, \bar{f}\right.$ is continuous and

$$
\begin{equation*}
\|\bar{f}(t)-\varepsilon \bar{g}(t)\|_{2} \leqslant 1 \tag{8}
\end{equation*}
$$

if $t \in W_{1}$ and $\varepsilon>0$ is small enough.

Let $\bar{f}(t)$ and $\bar{h}(t)$ be defined on the closed set A (cf. (7)) by

$$
\bar{h}(t)=\operatorname{sgn}\left(\tau_{i}(t)\right) \equiv \tau(t)
$$

and

$$
\bar{f}(t)=\bar{h}(t)\left(1-|\langle\bar{h}(t), \bar{g}(t)\rangle|^{3 / 2}\right),
$$

where $t=t_{0}, t_{0}^{i}$ for $i=1,2, \ldots$. Now we show that there exists an index i_{0} such that $\left\langle\bar{h}\left(t_{0}^{i}\right), \bar{g}\left(t_{0}^{i}\right)\right\rangle \neq 0$ for $i \geqslant i_{0}$. First observe that since \bar{g} is in G_{σ}, τ_{i} annihilates G_{σ}, and $\operatorname{supp}\left(\tau_{i}\right)=\left\{t_{0}^{i}, t_{1}, \ldots, t_{m}\right\}$, we get

$$
\begin{equation*}
0=\left\langle\tau_{i}\left(t_{0}^{i}\right), \bar{g}\left(t_{0}^{i}\right)\right\rangle+\sum_{j=1}^{m}\left\langle\tau_{i}\left(t_{j}\right), \bar{g}\left(t_{j}\right)\right\rangle . \tag{9}
\end{equation*}
$$

Since \bar{g} is in K, by the definition, we have either $\bar{g}\left(t_{j}\right)=0$ or

$$
\begin{equation*}
0<\left\langle\bar{g}\left(t_{j}\right), \tau\left(t_{j}\right)\right\rangle=\lim _{t \rightarrow \infty} \frac{\left\langle\bar{g}\left(t_{j}\right), \tau_{i}\left(t_{j}\right)\right\rangle}{\left\|\tau_{i}\left(t_{j}\right)\right\|_{2}} \tag{10}
\end{equation*}
$$

However, (10) implies that $\left\langle\bar{g}\left(t_{j}\right), \tau_{i}\left(t_{j}\right)\right\rangle>0$ for i large enough whenever $\bar{g}\left(t_{j}\right) \neq 0$. Since there is at least one j with $\bar{g}\left(t_{j}\right) \neq 0$, it follows from (9) that $\left\langle\tau_{i}\left(t_{0}^{i}\right), \bar{g}\left(t_{0}^{i}\right)\right\rangle<0$ (i.e., $\left\langle\bar{h}\left(t_{0}^{i}\right), \bar{g}\left(t_{0}^{i}\right)\right\rangle<0$) for i large enough. Thus, for $i \geqslant i_{0},\left\|\bar{f}\left(t_{0}^{i}\right)\right\|_{2}<1$ and $\left\|\bar{f}\left(t_{0}\right)\right\|_{2}=1$. Since $\lim _{i \rightarrow \infty} t_{0}^{i}=t_{0}$ and T is locally compact Hausdorff, there exist open sets W and V with compact closures such that $t_{0} \in V,\left[\left(\operatorname{supp}(\sigma) \cup\left\{t_{1}, \ldots, t_{m}\right\}\right) \backslash\left\{t_{0}\right\}\right] \subset W$, and $\operatorname{cl}(W) \cap \operatorname{cl}(V)=$ \varnothing. Choose i_{0} large enough such that $t_{0}^{i} \in V$ for $i \geqslant i_{0}$. Choose $W \subset W_{1}$ so that (8) holds for $t \in W$ and $\varepsilon>0$ small enough. By relabeling of t_{0}^{i}, we may assume without loss of generality that $t_{0}^{i} \in V$ for all i and

$$
\begin{equation*}
\left\|\bar{f}\left(t_{0}^{i}\right)\right\|_{2}<1, \quad \text { for } \quad i=1,2, \ldots \tag{11}
\end{equation*}
$$

Now \bar{h} can be extended from the closed set A (cf. (7)) to a continuous function $h(t)$ on the open set V with $A \subseteq V$ and $\|h(t)\|_{2} \equiv 1, t \in V$, by Tietze's Extension Theorem for locally compact Hausdorff spaces [12, p. 385] and the proof of Corollary 5.3 [4, p. 151]. Let $\bar{f}(t)=h(t)$ $\left(1-|\langle h(t), \bar{g}(t)\rangle|^{3 / 2}\right)$ for t in V. Since $B=\operatorname{cl}(V) \cup \operatorname{cl}(W)$ is compact, we can extend \bar{f} from B to a function F on all of T with F in $C_{c}\left(T, \mathbb{R}^{k}\right)$ (the collection of functions in $C_{0}\left(T, \mathbb{R}^{k}\right)$ whose supports are compact) and $\|F(t)\|_{2} \leqslant 1$. Let

$$
D:=\left\{t_{0}\right\} \cup\left\{t_{1}, \ldots, t_{m}\right\} \cup \operatorname{supp}(\sigma) \cup\left\{t_{0}^{i}:\left\langle h\binom{i}{0}, g\left(\bar{t}_{0}^{i}\right)\right\rangle \neq 0\right\} .
$$

Then D is a G_{δ} set, there exists [4, p. 148] a function ϕ in $C_{c}(T, \mathbb{R})$ with $0 \leqslant \phi(t) \leqslant 1$ and $\phi^{-1}(1)=D$. Thus $f=\phi F$ is an extension of \bar{f} from $W \cup V$ to T which satisfies the following conditions:

$$
\begin{align*}
f(t) & = \begin{cases}\operatorname{sgn}(\sigma(t)) & \text { for } \quad t \text { in } \operatorname{supp}(\sigma), \\
\operatorname{sgn}(\tau(t)) & \text { for } \quad t \text { in }\left\{t_{1}, \ldots, t_{m}\right\},\end{cases} \tag{12}\\
\|f(t)\|_{2} & <1 \quad \text { if } t \neq 0 \text { and } t \in V, \quad \text { and } \quad\left\|f\left(t_{0}\right)\right\|_{2}=1, \tag{13}\\
\left\|f\left(t_{0}^{i}\right)\right\|_{2} & =1-\left|\left\langle h\left(t_{0}^{i}\right), \bar{g}\left(t_{0}^{i}\right)\right\rangle\right|^{3 / 2} \text { if }\left\langle h\left(t_{0}^{i}\right), g\left(\bar{t}_{0}^{i}\right)\right\rangle \neq 0, \tag{14}\\
\|f(t)\|_{2} & \leqslant\|h(t)\|_{2}\left(1-|\langle h(t), \bar{g}(t)\rangle|^{3 / 2}\right) \quad \text { for } \quad t \in V, \tag{15}\\
\|h(t)\|_{2} & =1 \quad \text { if } t \text { is in } V, \tag{16}\\
h\left(t_{0}^{i}\right) & =\tau_{i}\left(t_{0}^{i}\right)=\tau\left(t_{0}^{i}\right), \quad i \geqslant i_{0}, \tag{17}
\end{align*}
$$

and

$$
\begin{equation*}
\|f(t)-\varepsilon \bar{g}(t)\|_{2} \leqslant 1 \quad \text { if } \quad \varepsilon \leqslant \varepsilon_{0} \text { and } t \notin V, \tag{18}
\end{equation*}
$$

where $\varepsilon_{0}>0$ is a small positive number. Note that (18) was verified for \bar{f} and t in W, now $\bar{f}(t)$ is replaced by $\phi(t) \bar{f}(t)$ for $0<\phi(t) \leqslant 1$ and the same calculation shows (18) still holds for $t \in W$. However, $\sup \left\{\|f(t)\|_{2}: t \notin\right.$ $(V \cup W)\}<1$ since V and W are open sets containing the only points where f has norm 1. Thus, (18) holds for f and $t \notin V$.

We claim that $P_{G}(f)=0$. First it is shown that if g is in $P_{G}(f)$ and $g \not \equiv 0$, then g is in K and thus in G_{σ}. If g is in $P_{G}(f)$, it is easy to verify that since $\|f-g\| \leqslant 1$ it follows that $\langle g(t), \sigma(t)\rangle \geqslant 0$ for t in $\operatorname{supp}(\sigma)$. Thus, by Lemma 7(b), $\langle g(t), \sigma(t)\rangle=0$ for t in $\operatorname{supp}(\sigma)$. Thus, for t in $\operatorname{supp}(\sigma)$, we have $(g(t), f(t))=0$, and

$$
1=\|f\| \geqslant\|f(t)-g(t)\|_{2}^{2}=\|f(t)\|_{2}^{2}+\|g(t)\|_{2}^{2}=1+\|g(t)\|_{2}^{2} .
$$

As a result, $g(t)=0$ for t in $\operatorname{supp}(\sigma)$ and g is in G_{σ}. Similarly, one can show that $\left\langle g\left(t_{j}\right), \tau\left(t_{j}\right)\right\rangle \geqslant 0$ for $j=1, \ldots, m$, and $g\left(t_{j}\right)=0$ whenever $\left\langle g\left(t_{j}\right), \tau\left(t_{j}\right)\right\rangle$ $=0$. Hence if $g \neq 0$, then g is in K.

Now we show that for any nonzero g in $P_{G}(f)$,

$$
\begin{equation*}
\lim _{i \rightarrow \infty} \sup \frac{\left|\left\langle\tau\left(t_{0}^{i}\right), g\left(t_{0}^{i}\right)\right\rangle\right|}{\left|\left\langle\tau\left(t_{0}^{i}\right), \bar{g}\left(t_{0}^{i}\right)\right\rangle\right|^{3 / 2}}>2 . \tag{19}
\end{equation*}
$$

If not, then

$$
\lim _{i \rightarrow \infty} \sup \frac{\left|\left\langle\tau\left(t_{0}^{i}\right), \frac{1}{2} g\left(t_{0}^{i}\right)\right\rangle\right|}{\left|\left\langle\tau\left(t_{0}^{i}\right), \bar{g}\left(t_{0}^{i}\right)\right\rangle\right|^{3 / 2}} \leqslant 1 .
$$

Since $g \in K$, it is easy to verify that $\frac{1}{2} g \in K$. By Lemma $8,\left\langle\tau\left(t_{0}^{i}\right), g\left(t_{0}^{i}\right)\right\rangle=0$, for $i \geqslant i$. (We may assume that $i \geqslant i_{0}$.) Now τ_{i} annihilates $G_{\sigma}, g \in G_{\sigma}$, and $\operatorname{supp}\left(\tau_{i}\right)=\left\{t_{0}^{i}, t_{1}, \ldots, t_{m}\right\}$. Thus,

$$
0=\sum_{t \in \operatorname{supp}\left(\tau_{i}\right)}\left\langle g(t), \tau_{i}(t)\right\rangle=\left\langle\tau_{i}\left(t_{0}^{i}\right), g\left(t_{0}^{i}\right)\right\rangle+\sum_{j=1}^{m}\left\langle\tau_{i}\left(t_{j}\right), g\left(t_{j}\right)\right\rangle,
$$

and by the definition of $\tau(t)$,

$$
0=\left\langle\tau\left(t_{0}^{i}\right), g\left(t_{0}^{i}\right)\right\rangle=\left\langle\operatorname{sgn}\left(\tau_{i}\left(t_{0}^{i}\right), g\left(t_{0}^{i}\right)\right)\right\rangle=\frac{\left\langle\tau_{i}\left(t_{0}^{i}\right), g\left(t_{0}^{i}\right)\right\rangle}{\left\|\tau_{i}\left(t_{0}^{i}\right)\right\|} .
$$

Hence, $\left\langle\tau_{i}\left(t_{0}^{i}\right), g\left(t_{0}^{i}\right)\right\rangle=0$. Since τ_{i} is an annihilator of $G_{\sigma}, g \in K \subset G_{\sigma}$, and $\operatorname{supp}\left(\tau_{i}\right)=\left\{t_{0}^{i}, t_{1}, \ldots, t_{m}\right\}$, we obtain

$$
\begin{equation*}
\sum_{j=1}^{m}\left\langle\tau_{i}\left(t_{j}\right), g\left(t_{j}\right)\right\rangle=\sum_{t \in \operatorname{supp}\left(\tau_{i}\right)}\left\langle\tau_{i}(t), g(t)\right\rangle=0 . \tag{20}
\end{equation*}
$$

Since g is in $K, g\left(t_{j}\right)=0$ or $\left\langle g\left(t_{j}\right), \tau\left(t_{j}\right)\right\rangle>0$ for $j=1, \ldots, m$. If $\left\langle g\left(t_{j}\right)\right.$, $\left.\tau\left(t_{j}\right)\right\rangle>0$ then for i sufficiently large $\left\langle\tau_{i}\left(t_{j}\right), g\left(t_{j}\right)\right\rangle>0$. Thus from (20) it follows that $g\left(t_{j}\right)=0, j=1, \ldots, m$. But then $g \equiv 0$ since G_{σ} is a generalized Haar set on $G \backslash Z\left(G_{\sigma}\right)$ and this contradicts the assumption that $g \not \equiv 0$, and thus (19) holds.

Now with nonzero g in $P_{G}(f)$ from (19) it follows that for infinitely many indices i,

$$
\begin{equation*}
\left|\left\langle\tau\left(t_{0}^{i}\right), g\left(t_{0}^{i}\right)\right\rangle\right|>2\left|\left\langle\tau\left(t_{0}^{i}\right), \bar{g}\left(t_{0}^{i}\right)\right\rangle\right|^{3 / 2} . \tag{21}
\end{equation*}
$$

Since τ_{i} is an annihilator of G_{σ}, the above inequality implies that, for infinitely many i 's

$$
\begin{equation*}
\left\|\tau_{i}\left(t_{0}^{i}\right)\right\|_{2}\left\langle\tau\left(t_{0}^{i}\right), g\left(t_{0}^{i}\right)\right\rangle=-\sum_{j=1}^{m}\left\langle\tau_{i}\left(t_{j}\right), g\left(t_{j}\right)\right\rangle<0 \tag{22}
\end{equation*}
$$

Thus,

$$
\begin{align*}
\left\|f\left(t_{0}^{i}\right)-g\left(t_{0}^{i}\right)\right\|_{2}^{2}= & \left\|\left\langle\tau\left(t_{0}^{i}\right), f\left(t_{0}^{i}\right)-g\left(t_{0}^{i}\right)\right\rangle \tau\left(t_{0}^{i}\right)\right\|_{2}^{2} \\
& +\left\|f\left(t_{0}^{i}\right)-g\left(t_{0}^{i}\right)-\left\langle\tau\left(t_{0}^{i}\right), f\left(t_{0}^{i}\right)-g\left(t_{0}^{i}\right)\right\rangle \tau\left(t_{0}^{i}\right)\right\|_{2}^{2} \\
= & \left|\left\|f\left(t_{0}^{i}\right)\right\|_{2}-\left\langle\tau\left(t_{0}^{i}\right), g\left(t_{0}^{i}\right)\right\rangle\right|^{2} \\
& +\left\|g\left(t_{0}^{i}\right)-\left\langle\tau\left(t_{0}^{i}\right), g\left(t_{0}^{i}\right)\right\rangle \tau\left(t_{0}^{i}\right)\right\|_{2}^{2}, \tag{23}
\end{align*}
$$

where the first equality is an orthogonal decomposition of the error vector and then we use the definition of $f(t)$ to simplify the expression.

We continue the estimate of $\left\|f\left(t_{0}^{i}\right)-g\left(t_{0}^{i}\right)\right\|_{2}^{2}$ by using indices i for which (21) and (22) hold. Then

$$
\begin{align*}
\left\|f\left(t_{0}^{i}\right)-g\left(t_{0}^{i}\right)\right\|_{2}^{2} & \geqslant\left(\left\|f\left(t_{0}^{i}\right)\right\|_{2}+\left|\left\langle\tau\left(t_{0}^{i}\right), g\left(t_{0}^{i}\right)\right\rangle\right|\right)^{2} \\
& \geqslant\left\|f\left(t_{0}^{i}\right)\right\|_{2}^{2}+2\left\|f\left(t_{0}^{i}\right)\right\|_{2}\left|\left\langle\tau\left(t_{0}^{i}\right), g\left(t_{0}^{i}\right)\right\rangle\right| . \tag{24}
\end{align*}
$$

Note that $\phi\left(t_{0}^{i}\right)=1$ and $f\left(t_{0}^{i}\right)=h\left(t_{0}^{i}\right)\left(1-\left|\left\langle h\left(t_{0}^{i}\right), \bar{g}\left(t_{0}^{i}\right)\right\rangle\right|^{3 / 2}\right)$. Thus,

$$
\begin{align*}
\left\|f\left(t_{0}^{i}\right)\right\|_{2}^{2} & =\left(1-\left|\left\langle h\left(t_{0}^{i}\right), \bar{g}\left(t_{0}^{i}\right)\right\rangle\right|^{3 / 2}\right)^{2} \\
& =\left(1-\left|\left\langle\tau\left(t_{0}^{i}\right), \bar{g}\left(t_{0}^{i}\right)\right\rangle\right|^{3 / 2}\right)^{2} \\
& \geqslant 1-2\left|\left\langle\tau\left(t_{0}^{i}\right), \bar{g}\left(t_{0}^{i}\right)\right\rangle\right|^{3 / 2} . \tag{25}
\end{align*}
$$

Since $\left\|f\left(t_{0}^{i}\right)\right\|_{2} \rightarrow 1$ and $\left|\left\langle\tau\left(t_{0}^{i}\right), \bar{g}\left(t_{0}^{i}\right)\right\rangle\right|^{1 / 2} \rightarrow 0$ as $i \rightarrow \infty$, we have $2\left\|f\left(t_{0}^{i}\right)\right\|_{2}$ $\geqslant 1$ for i sufficiently large. Then, by (24), (25), and (21), we get that for infinitely many i 's,

$$
\left\|f\left(t_{0}^{i}\right)-g\left(t_{0}^{i}\right)\right\|_{2}^{2} \geqslant 1-2\left|\left\langle\tau\left(t_{0}^{i}\right), \bar{g}\left(t_{0}^{i}\right)\right\rangle\right|^{3 / 2}+\left|\left\langle\tau\left(t_{0}^{i}\right), g\left(t_{0}^{i}\right)\right\rangle\right|>1 .
$$

This is impossible, since $g \in P_{G}(f)$. The contradiction proves our claim that $P_{G}(f)=\{0\}$.

Next we show that $P_{G}(f)$ is not strongly unique of order 2 by estimating $\|f-\varepsilon \bar{g}\|$. By the definition of $f(t)$, for $\varepsilon>0$ small enough, $\|f(t)-\varepsilon \bar{g}(t)\|_{2}$ $\leqslant 1$ if $t \notin V$ (a neighborhood of t_{0}) (cf. (18)). If $P_{G}(f)$ is strongly unique of order 2 , then there exists a positive constant γ such that

$$
\|f-\varepsilon \bar{g}\|^{2} \geqslant \operatorname{dist}(f, G)^{2}+\gamma \operatorname{dist}\left(\varepsilon \bar{g}, P_{G}(f)\right)^{2},
$$

i.e.,

$$
\begin{equation*}
\|f-\varepsilon \bar{g}\|^{2} \geqslant 1+\gamma \varepsilon^{2}\|\bar{g}\|^{2} \tag{26}
\end{equation*}
$$

Let $t_{\varepsilon} \in V$ be such that

$$
\left\|f\left(t_{\varepsilon}\right)-\varepsilon \bar{g}\left(t_{\varepsilon}\right)\right\|_{2}=\|f-\varepsilon \bar{g}\|>1
$$

Since $\|f(t)\|_{2}<1$ for $t \in V$ and $t \neq t_{0}$, it follows that $t_{\varepsilon} \rightarrow t_{0}$ as $\varepsilon \rightarrow 0^{+}$. Note that

$$
\begin{aligned}
& \left\|f\left(t_{\varepsilon}\right)-\varepsilon \bar{g}\left(t_{\varepsilon}\right)\right\|_{2}^{2} \\
& \quad=\left\|f\left(t_{\varepsilon}\right)\right\|_{2}^{2}-2 \varepsilon\left\langle f\left(t_{\varepsilon}\right), \bar{g}\left(t_{\varepsilon}\right)\right\rangle+\varepsilon^{2}\left\|\bar{g}\left(t_{\varepsilon}\right)\right\|_{2}^{2} \\
& \quad \leqslant 1-\left|\left\langle h\left(t_{\varepsilon}\right), \bar{g}\left(t_{\varepsilon}\right)\right\rangle\right|^{3 / 2}-2 \varepsilon\left\langle f\left(t_{\varepsilon}\right), \bar{g}\left(t_{\varepsilon}\right)\right\rangle+\varepsilon^{2}\left\|\bar{g}\left(t_{\varepsilon}\right)\right\|_{2}^{2} .
\end{aligned}
$$

By the above equality, (26), and $\bar{g}\left(t_{\varepsilon}\right) \rightarrow 0$ as $\varepsilon \rightarrow 0$, we obtain that, for $\varepsilon>0$ small enough,

$$
\begin{aligned}
1+\gamma \varepsilon^{2}\|\bar{g}\|^{2} & \leqslant\|f-\varepsilon \bar{g}\|^{2} \\
& \leqslant 1-2 \varepsilon\left\langle f\left(t_{\varepsilon}\right), \bar{g}\left(t_{\varepsilon}\right)\right\rangle-\left|\left\langle h\left(t_{\varepsilon}\right), \bar{g}\left(t_{\varepsilon}\right)\right\rangle\right|^{3 / 2}+\frac{1}{2} \gamma \varepsilon^{2}\|\bar{g}\|^{2},
\end{aligned}
$$

which implies that

$$
-2 \varepsilon\left\langle f\left(t_{\varepsilon}\right), \bar{g}\left(t_{\varepsilon}\right)\right\rangle-\left|\left\langle h\left(t_{\varepsilon}\right), \bar{g}\left(t_{\varepsilon}\right)\right\rangle\right|^{3 / 2} \geqslant \frac{1}{2} \gamma \varepsilon^{2}\|\bar{g}\|^{2} .
$$

As a consequence, $\left\langle f\left(t_{\varepsilon}\right), \bar{g}\left(t_{\varepsilon}\right)\right\rangle<0$ and

$$
2 \varepsilon\left|\left\langle f\left(t_{\varepsilon}\right), \bar{g}\left(t_{\varepsilon}\right)\right\rangle\right| \geqslant\left|\left\langle h\left(t_{\varepsilon}\right), \bar{g}\left(t_{\varepsilon}\right)\right\rangle\right|^{3 / 2}+\frac{1}{2} \gamma \varepsilon^{2}\|\bar{g}\|^{2} .
$$

Since $f\left(t_{\varepsilon}\right)=\alpha h\left(t_{\varepsilon}\right)$ for some $0 \leqslant \alpha \leqslant 1$, the above inequality implies

$$
\begin{equation*}
2 \varepsilon\left|\left\langle h\left(t_{\varepsilon}\right), \bar{g}\left(t_{\varepsilon}\right)\right\rangle\right| \geqslant\left|\left\langle h\left(t_{\varepsilon}\right), \bar{g}\left(t_{\varepsilon}\right)\right\rangle\right|^{3 / 2}+\frac{1}{2} \gamma \varepsilon^{2}\|\bar{g}\|^{2} . \tag{27}
\end{equation*}
$$

Since $\left|\left\langle h\left(t_{\varepsilon}\right), \bar{g}\left(t_{\varepsilon}\right)\right\rangle\right|^{1 / 2} \rightarrow 0$, for $\varepsilon>0$ small enough,

$$
\begin{equation*}
\frac{\gamma\|\bar{g}\|^{2}}{2}\left|\left\langle h\left(t_{\varepsilon}\right), \bar{g}\left(t_{\varepsilon}\right)\right\rangle\right|^{-1 / 2}>1 . \tag{28}
\end{equation*}
$$

By (27) and (28),

$$
\begin{equation*}
2 \varepsilon\left|\left\langle h\left(t_{\varepsilon}\right), \bar{g}\left(t_{\varepsilon}\right)\right\rangle\right|>\frac{2}{\gamma\|\bar{g}\|^{2}}\left|\left\langle h\left(t_{\varepsilon}\right), \bar{g}\left(t_{\varepsilon}\right)\right\rangle\right|^{2}+\frac{1}{2} \gamma \varepsilon^{2}\|\bar{g}\|^{2} . \tag{29}
\end{equation*}
$$

Equivalently, we have

$$
\left(\sqrt{\frac{2}{\gamma\|\bar{g}\|^{2}}}\left|\left\langle h\left(t_{\varepsilon}\right), \bar{g}\left(t_{\varepsilon}\right)\right\rangle\right|-\sqrt{\frac{\gamma\|\bar{g}\|^{2}}{2}} \varepsilon\right)^{2}<0,
$$

which is impossible. Therefore, $P_{G}(f)$ is not strongly unique of order 2 .

REFERENCES

1. M. Bartelt and W. Li, Haar theory in vector-valued continuous function spaces, in "Approximation Theory VIII," Vol. 1, "Approximation and Interpolation" (C. K. Chui, and L. L. Schumaker, Eds.), pp. 39-46, World Scientific, New York, 1995.
2. V. I. Berdyshev, On the uniform continuity of metric projection, in "Approximation Theory," Banach Center Publications, Vol. 4, pp. 35-41, PWN-Polish Scientific Publishers, Warsaw, 1979.
3. F. Deutsch, Best approximation in the space of continuous vector-valued functions, J. Approx. Theory 53 (1988), 112-116.
4. J. Dugundgi, "Topology," Allyn and Bacon, Boston, 1967.
5. G. Freud, Eine Ungleichung für Tschebysheffische approximation Polynome, Acta. Sci. Math. (Szeged) 19 (1958), 162-164.
6. A. Haar, Die Minkowski Geometrie und die Annaherung an stetige Funktionen, Math. Ann. 78 (1918), 294-311.
7. R. Holmes and B. Kripke, Smoothness of approximation, Michigan Math. J. 15 (1968), 225-248.
8. W. Li, Strong uniqueness and Lipschitz continuity of metric projection: A generalization of the classical Haar theory, J. Approx. Theory 65 (1989), 164-184.
9. P. K. Lin, Strongly unique best approximation in uniformly convex Banach spaces, J. Approx. Theory 56 (1989), 101-107.
10. H. McLaughlin and K. Sommers, Another characterization of Haar subspaces, J. Approx. Theory 14 (1975), 93-102.
11. D. J. Newman and H. S. Shapiro, Some theorems on Chebyshev approximation, Duke Math. J. 30 (1963), 673-684.
12. W. Rudin, "Real and Complex Analysis," McGraw-Hill, New York, 1980.
13. S. I. Zukhovitskii and S. B. Stechkin, On approximation of abstract functions with values in Banach space, Dokl. Akad. Nauk. SSSR 106 (1956), 773-776.

[^0]: * The research of this author is partially supported by the AFOSR under Grant F49620-95-1-0045 and the NASA/Langley Research Center under Grant NCC-1-68 Supplement-16.

